Heteroplasmy is ubiquitous and stable at the single cell level
نویسندگان
چکیده
Correspondence: [email protected] Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , One Gustave L. Levy place, New York, 10029, USA Full list of author information is available at the end of the article Abstract Eukaryotic cells carry two genomes, nuclear (nDNA) and mitochondrial (mtDNA), which are ostensibly decoupled in their replication, segregation and inheritance. It is increasingly appreciated that heteroplasmy, the occurrence of multiple mtDNA haplotypes in a cell, plays an important biological role, but its features are not well understood. Until now, accurately determining the diversity of mtDNA has been difficult due to the relatively small amount of mtDNA in each cell (< 1% of the total DNA), the intercellular variability of mtDNA content and copies of mtDNA pseudogenes in nDNA. To understand the nature of heteroplasmy, we developed Mseek, a novel technique that purifies and sequences mtDNA. Mseek yields high purity (> 98%) mtDNA and its ability to detect rare variants is limited only by sequencing depth, providing unprecedented sensitivity and specificity. Using Mseek, we confirmed the ubiquity of heteroplasmy by analyzing mtDNA from a diverse set of cell lines and human samples. Applying Mseek to colonies derived from single cells, we find heteroplasmy is stably maintained in individual daughter cells over multiple cell divisions. Our simulations suggest the stability of heteroplasmy is facilitated by the exchange of mtDNA between cells. We also explicitly demonstrate this exchange by co-culturing cell lines with distinct mtDNA haplotypes. Our results shed new light on the maintenance of heteroplasmy and provide a novel platform to investigate various features of heteroplasmy in normal and diseased tissues.
منابع مشابه
Stable heteroplasmy at the single-cell level is facilitated by intercellular exchange of mtDNA
Eukaryotic cells carry two genomes, nuclear (nDNA) and mitochondrial (mtDNA), which are ostensibly decoupled in their replication, segregation and inheritance. It is increasingly appreciated that heteroplasmy, the occurrence of multiple mtDNA haplotypes in a cell, plays an important biological role, but its features are not well understood. Accurately determining the diversity of mtDNA has been...
متن کاملMito-seek enables deep analysis of mitochondrial DNA, revealing ubiquitous, stable heteroplasmy maintained by intercellular exchange
Correspondence: [email protected] Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai , One Gustave L. Levy place, New York, 10029, USA Full list of author information is available at the end of the article Abstract Eukaryotic cells carry two genomes, nuclear (nDNA) and mitochondrial (mtDNA), which are ostensibly decoupled in their replication, segregation and inherita...
متن کاملP-30: The Investigation of Transcript Expression Level of Mitochondrial Transcription Factor A (TFAM) during In Vitro Maturation (IVM) in Single Human Oocytes
Background In vitro maturation (IVM) of human oocytes has acquired increasing attention in infertility treatment with great promise. This technique is an alternative conventional in vitro fertilization-embryo transfer (IVF-ET), and can be reduced the side effects of gonadotropin stimulation such as ovarian hyperstimulation (OHSS). Oocyte maturation is a complex process including cytoplasmic and...
متن کاملRecent Advances in Detecting Mitochondrial DNA Heteroplasmic Variations.
The co-existence of wild-type and mutated mitochondrial DNA (mtDNA) molecules termed heteroplasmy becomes a research hot point of mitochondria. In this review, we listed several methods of mtDNA heteroplasmy research, including the enrichment of mtDNA and the way of calling heteroplasmic variations. At the present, while calling the novel ultra-low level heteroplasmy, high-throughput sequencing...
متن کاملGenotypic stability, segregation and selection in heteroplasmic human cell lines containing np 3243 mutant mtDNA.
The mitochondrial genotype of heteroplasmic human cell lines containing the pathological np 3243 mtDNA mutation, plus or minus its suppressor at np 12300, has been followed over long periods in culture. Cell lines containing various different proportions of mutant mtDNA remained generally at a consistent, average heteroplasmy value over at least 30 wk of culture in nonselective media and exhibi...
متن کامل